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3D laser from RGBD projections in
robot local navigation

Luis V. Calderita!, Juan P. Bandera?, Luis J. Manso! and Ricardo
Viazquez-Martin3

Abstract—Social robots are required to work
in daily life environments. The navigation al-
gorithms they need to safely move through
these environments require reliable sensor
data. We present a novel approach to increase
the obstacle-avoidance abilities of robots by
mounting several sensors and fusing all their
data into a single representation. In particular,
we fuse data from multiple RGBD cameras
into a single emulated two-dimensional laser
reading of up to 360 degrees. While the output
of this virtual laser is two-dimensional, it
integrates the obstacles detected at any height,
so it can be safely used as input for regular
two-dimensional navigation algorithms (both
VFH* and R-ORM have been tested). Experi-
ments conducted on real scenarios demonstrate
the usefulness and efficiency of the proposed
solution, which allows the robot to reach goals
while avoiding static and dynamic obstacles.

Index Terms—Mobile robots, Reactive nav-
igation, Sensor arrays, RGBD.

I. INTRODUCTION

Social robots have to interact with people
in daily life environments, and navigation
is one of the main requisites for social
robots to successfully accomplish their tasks.
These environments are unpredictable and
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populated by many different moving objects,
which make moving through these environ-
ments a challenging task.

There are two main types of navigation al-
gorithms. Deliberative algorithms find clear
paths towards the objective using a model of
the environment. They are not well-suited for
dynamic environments because the models
used to compute paths get outdated quickly.
Reactive navigation algorithms, on the other
hand, use the latest sensory inputs to detect
obstacles in the local environment of the
robot and propose a safe direction towards
the desired objective. Despite reactive algo-
rithms can react to unpredicted situations,
they lack of a complete model of the envi-
ronment, and may lead the mobile agent to
traps or local minima where it can be bogged
down. These issues are usually solved by
adding higher-level (deliberative) path plan-
ners to lower-level reactive navigation sys-
tems (i.e., using hybrid systems) [14].

Classical reactive navigation algorithms
are based on potential fields [6]. This algo-
rithm models repulsive and attractive forces
that makes the robot moves away from ob-
stacles, and towards the objective. Despite
its theoretical usefulness, this method has
strong issues: it tends to halt in traps or
local minima, produces nodding trajecto-
ries in corridors and cannot navigate be-
tween near obstacles. Thus, many alterna-
tives have been proposed in recent years.
Vector Field Histogram (VFH) [2] employs
local histograms to reduce sensory inputs
to a set of motion alternatives. Dynamic
Window Approach (DWA) [4] minimizes a
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cost function to avoid obstacles. ND Near-
ness Diagram [10] and Obstacle Restriction
Method (ORM) [9] follow a “divide and
conquer” strategy and decompose the prob-
lem of reaching a certain goal into a set of
sub-problems. Each of these sub-problems
focuses on reaching a certain sub-goal while
avoiding obstacles.

All these pure reactive navigation systems
can make a robot reach a certain objective
defined in local coordinates. However, the
time consumed to reach that objective may
be much longer than the optimal. Besides,
reactive navigation uses to produce odd mo-
tion patterns with respect to human natural
motion. Social robots, that have to inter-
act with people in daily life environments,
should avoid these behaviours to increase
efficiency, but also to avoid rejection [11].

Perceptual limitations are among the key
reasons for these issues of reactive naviga-
tion systems. Reachable objectives are usu-
ally set in the perceived area of the en-
vironment [3], and thus limited perception
constraints the efficiency of the navigation
system. In example, a robot equipped with
a 180 front laser will not be able to de-
tect obstacles behind it (unless the system
incorporates some type of memory about
previously perceived obstacles). Thus, it will
avoid setting navigation objectives there.

Sensor fusion is a powerful mechanism
to increase the perceptual abilities of a
robot [1]. Instead of using a single expensive
sensor to acquire data from the environment,
the sensor fusion approach relies on multiple
sensors, which data are fused to conform a
single representation. In other words, using
sensor fusion several constrained sensors can
be fused to emulate a sensor that has a wider
range, and that is more accurate. An emu-
lated sensor may have very different charac-
teristics. However, most reactive navigation
algorithms are adapted to work with laser
data [7]. Thus, for navigation in flat, daily
life environments, making these emulated
sensors behave as laser range finders is the
most practical choice.

This paper proposes to fuse the data
collected by an array of different sensors,
mounted on a social robot, to make it nav-
igate through a dynamic, unconstrained en-
vironment. The robot will use only a reac-
tive navigation algorithm. In order to meet
the stringent requirements of robotics soft-
ware (robustness, code reuse, scalability, dis-
tribution, hardware independence, etc.) all
software will be developed using the open-
source Robotics Framework RoboComp' [8].

The paper firstly explains, in Section II,
the overall structure of the proposed system.
Then, Section III describes how different
sensor readings have been fused to create
a synthetic laser reading. It focuses on the
particular case of fusing data obtained from
different RGBD cameras. These devices are
cheap, robust, accurate, and able to detect
obstacles in a volume (instead of a plane,
as most laser range finders). Their main
limitation is their constrained field of view,
but sensor fusion can solve this issue. Thus,
they become the perfect candidate to test
the performance of the proposed method.
Section IV provides a brief description of
the two reactive algorithms employed in this
paper. Section V details the experimental set-
up used to test the system and analyses ob-
tained results. Finally, Section VI concludes
the paper highlighting the main advantages
and drawbacks of the proposes approach, and
the future work that will be conducted in
further related researches.

II. PROPOSED ARCHITECTURE

As detailed above, most reactive navi-
gation algorithms are able to process data
provided by laser range finders. Thus, repre-
senting fused perceptual data as laser read-
ings increases the usefulness, efficiency and
adaptability of the proposed approach. Of
course, it also allows using a real laser range
finder instead of the emulated one.

Fig. 1 shows the proposed system ar-
chitecture. Each blob represents a software

IThis framework is available at www.robocomp.org
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component in the RoboComp framework [8].
As depicted, several heterogeneous percep-
tual systems are fused to create an emu-
lated laser sensor (a virtual laser). Data pro-
vided by this virtual sensor is employed to
feed the reactive navigation algorithm. This
paper tests two different algorithms: The
well-known VFH* (Vector Field Histogram
*) [13] and the R-ORM (Relaxed Obstacle
Restriction Method), a modification of the
ORM algorithm [9].

R-ORM
(navigator)

VFH*
(navigator)

Fig. 1. Reactive navigator: System overview

III. SENSOR FUSION: GENERATION OF
SYNTHETIC LASER READINGS BY FUSING
DIFFERENT SENSORY INPUTS

As explained above, a group of RGBD
sensors may become a cheap, robust and
more useful alternative to traditional laser
range finders, if their data is correctly fused.
In this paper, laserRGBDComp, a new com-
ponent for the RoboComp framework, has
been developed. This software component
allows fusing information provided by one
or more sensors (RGBD or not) into an
emulated laser projection. This eases test-
ing different navigation algorithms, as most
of them require laser readings. Thanks to
RoboComp framework, the only requisite for
laserRGBDComp is to implement the same
interface than a component dedicated to ob-
tain real laser readings.

A. laserRGBDComp

It is a special component, that has to
connect to other components (via proxies)
but that does not predict a priori the number
or types of required connections. This allows
the component to dynamically include new
sensors in the sensor fusion process. On the
other hand, this characteristic makes the de-
sign of laserRGDComp more complex, to the
point that it cannot be self-generated using
the component generation tool (RoboCom-
pDSL) provided by the RoboComp frame-
work [5]. Thus, the component had to be
manually designed and implemented from
scratch.

The first implementation of laserRGD-
Comp fused RGBD sensors into an emulated
laser reading. This fusion is based on two
ideas:

e RGBD cameras provide depth maps
whose pixels (¢, j) can be characterized
by an azimuth (horizontal) angle o; j,
an elevation (vertical) angle 3, ;), an a
z-depth value d(i, - On the other hand,
a laser reading P can be represented as
an array of angle-distance tuples (o, dl).
The laserRGDComp component creates
an emulated laser reading using Eq. 1.

Pi(0) = ag,j

" , , ey
Pi(dl) = min(d; j))Vj

being, in RGBD depth maps, a; j1) =
A(i,52)

Vjl1,j2. Fig. 2 depicts how the data
gathered from an RGBD sensor is em-
ployed to obtain an emulated laser read-
ing that includes obstacles detected at
different heights (e.g., table tops and
legs).

o Several of the previous readings can be
fused into a single reading if the relative
poses of each sensor are known. Thus,
for a system composed of n RGBD
cameras, being M), the transformation
matrix from camera k to the local origin
(0,0,0) of the robot, Eq. 2 is employed
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to fuse readings P, into a single reading
P:

-

w =M P
Pi(0) = a?;j) Vk € [1..n]
Py(dl) = min(df; ;) Yk € [1.n]Vj
2

being a and d( 7 the azimuth values

and dlstances for Pk pixels, respec-
tively.

Tble SR,

%

Fig. 2. Detection of obstacles using laserRGBDComp.

New sensors, such as sonar or infrared
range sensors, can be easily incorporated to
these fused readings. laserRGBDComp can
currently fuse data provided by (i) RGBD
cameras; (ii) laser sensors; (iii) any sensor
data that can be represented as a sequence
of 2D or 3D position-distance vectors. The
components that deal with sonar sensors,
infrared sensors or even bumpers in Robo-
Comp can match these criteria, with small
changes in their interfaces at most [8].

B. How does laserRGBDComp work?

This subsection provides implementation
details about this component. As commented
above, given a number n of depth images
from n sensors and knowing the positions
of these sensors on board the robot, each
transferring data is transformed to a common
position. The emulated laser is located on
this position. The proposed method applies
Eq. 2 to obtain a synthetic laser measure,

in which all collected distances are fused. If
two sensors are measuring the same position,
then the minimum distance is set for that
position.

In order to ease its initialization, the com-
ponent loads a file that describes the Inner-
Model, or specific configuration of the robot.
This description consists of a kinematic hi-
erarchical tree that describes the robot. It
is essentially an internal representation of
the robot. As any other kinematics chain,
it allows to easily obtain the transformation
matrix between any two nodes. This makes
it adaptable to other robots. The file includes
also additional parameters that allow to ad-
just it to different needs (see Table I).

laserRGBDComp requires to execute a
prior calibration process in order to cor-
rectly merge data from more than one sensor
on a single laser projection. The calibra-
tion process checks that the projection of
each camera is coherent with its pose. The
calibration is currently performed manually,
through a specific “calibration mode” When
in this mode, laserRGBDComp projects the
point clouds of every camera according to
the virtual laser position. The user manually
adjust positions and orientations of each sen-
sor to make these projections match the real
distance measures. This process refines the
poses initially provided by the kinematics
tree. Figure 3 summarizes it at a glance.
As depicted, a good distribution of sensors
will have to reach a compromise between
the total angle covered by the cameras, the
common area and the threshold without in-
formation about the robot.

IV. REACTIVE NAVIGATION

Two reactive algorithms have been em-
ployed in this paper to perform navigation.
Both of them use emulated laser data as their
only input. This Section briefly describes
them. It also explains the modifications and
improvements added to these algorithms to
make them work in long-term experiments,
performed in dynamic real environments.
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#laserRGBD.conf Config file

# provided laser interface
laserRGBComp.Endpoints=tcp -p 11176

# Cinematic tree described in a kind of file called
Innermodel.

# contains the relative position of the RGBDs
relative to the position of the virtual laser we
simulate.

InnerModelPath =
/home/robocomp/robocomp/Components/Adapta/Files/
gualzruMRGBD.xml

# Number of RGBD

RGBDNumber=3

# Identifier of the node of the cinematic tree
where it is the virtual laser

LaserBaseID = base

# Minimum height to the obstacles. Useful to
discard the floor

MinHeight = 200.

# Maximum height of the obstacles. Useful to
discard the ceiling or lamps.

MaxHeight = 2000.

#Minimum height to gaps. Useful to avoid holes
or steps.

MinHeightNeg = -5000.

# number of laser measures

LaserSize = 100 #628

# Minimun range of the laser. Distance in
millimetres.

MinRange = 50.

# Maximun range of the laser. Distance in
millimetres.

MaxRange = 1500.

# Field of View of the laser in radians

FOV =3.14

#proxy to rgbds to generate the 3D laser projection
RGBDProxy1 = rgbdbus:tcp -h gualzru3.local -p
10229

RGBDID1 = 1208240087

RGBDProxy2 = rgbdbus:tcp -h gualzru3.local -p
10229

RGBDID2 = 1103010046

RGBDProxy3 = rgbd:tcp -h robonuc.local -p
100096

RGBDID3 = 1105150157

TABLE 1
LASERRGBD CONFIG FILE.

A. VFH*

The Vector Field Histogram (VFH) nav-
igation algorithm uses an stochastic repre-
sentation of the environment, based on an
histogram grid. This representation helps re-
ducing the uncertainty derived from sensor
errors and modelling. It considers the dy-
namics and shape of the robot, and provides
motion commands that are specific for the
employed agent.

VFH [2] and its improved version,

Fig. 3.
clouds projected to laser position; (c) Detail of the pose
of the RGBD cameras (Asus Xtion); and (d) Generated
virtual laser.

(a) Current configuration of the robot; (b) Point

VFH+ [12], are affected by the typical issue
of reactive navigation algorithms: dealing
only with local data it is not possible to guar-
antee global optimal behaviour. VFH* [13]
algorithm addresses this issue, by checking
the validity and quality of provided speed
and turning commands. A* algorithm is used
for this purpose. VFH* has demonstrated
that these forward -predictive- checks allow
solving scenarios in which VFH and VFH+
fail. Besides, VFH* generates faster but also
smoother trajectories.

B. R-ORM

The R-ORM algorithm is an evolution of
the Obstacle Restriction Method (ORM) pro-
posed by Chamorro and Vazquez-Martin [3].
This algorithm divides the problem of reach-
ing a certain objective, avoiding collisions,
into a set of sub-problems. Each of these sub-
problems consists on reaching a certain sub-
objective. The perceived obstacle distribution
around the robot defines the positions where
these sub-objectives are placed. The method
generates speed and turning commands that
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allow the robot reaching the final objective
by navigating through a sequence of sub-
objectives.

The vanilla representation of the R-ORM
has several issues when applied to real robots
employed in long-term experiments and dy-
namic environments. The following modi-
fications have been incorporated to the R-
ORM algorithm to solve these issues:

e Once R-ORM sets a sub-objective, it
has to reach it before computing a
new one. In real experiments, this de-
cision causes very inefficient situations:
a temporal occlusion of the final ob-
jective forces the selection of distant
sub-objectives that attract the robot even
when the objective is visible again. This
issue has been solved by making the
robot immediately forget the current
sub-objective, and target the final objec-
tive when it is perceived as reachable.

e In order to reduce nodding produced
by fast changes in the current sub-
objective, an inertia factor has been
included. Once a new sub-objective is
selected, it is kept as the current goal
for a certain time, that depends on the
inertia value.

o Although R-ORM is quite robust in
general, it can lead the robot to a halt
position, in which it is unable to move
towards the sub-objective nor to set a
new one. A patience parameter has also
been included in the code to deal with
these situations. If the robot stands in
the same position for a time longer than
this patience value (and it has reached
no objective yet), it spins for a certain
time until a new sub-objective is set.

V. EXPERIMENTAL RESULTS

Two sets of experiments were conducted
to check the validity of the proposed fused
sensor for navigation purposes. The first
set of test involved simulated environments.
These tests compared VFH* and -ORM.
Its results allowed both to select the most

adequate navigation algorithm for the em-
ployed scenarios and sensors, and to refine
its performance.

The second set of experiments was con-
ducted in real scenarios. Long-term experi-
ments in dynamic environments were con-
ducted, and their results were used to refine
employed algorithms. Final results validate
the proposed sensor fusion approach for real
robots, working in daily life environments.

A. Simulation tests

Simulation tests are executed in com-
plex virtual scenarios, that include randomly
moving objects (Fig. 4). The first set of
tests conducted on these scenarios checks the
validity of the proposed system, and com-
pare VFH* and R-ORM algorithms. In these
tests, random goals appear for the robot, and
it has to approach them closer than a certain
distance threshold d,. If the robot manages
to approach the goal before a certain time
tout lasts, the goal is marked as reached.
Otherwise, it is marked as failed.

Fig. 4 depicts a screen shot of the sim-
ulator, taken while running one experiment.
Each experiment lasted for more than eight
hours, in order to guarantee the stability
and robustness of the developed software.
As depicted, both reached and non-reached
goals are marked.

Both algorithms obtained fairly good re-
sults in these tests. Most unreachable goals
were located too near to the obstacles (no
restriction was imposed to the goal gen-
erator). However, #-ORM demonstrated a
better ability to avoid being bogged in local
minima, and reached the goals in shorter
time. Thus, it was selected as the reactive
navigation algorithm to be employed in the
robot. Further tests demonstrated that R-
ORM, in its vanilla version, had several
issues that should be corrected before con-
ducting experiments in real robots. These
modifications have been detailed in Section
IV. The rest of the experiments described
in the Section use the R-ORM algorithm,
including these modifications.
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Fig. 4. Employed simulator: Green boxes represent
objectives that have been already reached by the robot.
The blue box is the next objective. The red box is an
objective that was not reached before time out.

One of the first detected issues was related
to robot speed, specially to robot rotation
speed. In the first executed simulations, the
robot was able to move at very high speeds.
This ability allows it to aim the goal per-
fectly and in a very short time. However,
(i) real robots have constrained advance and
rotation speeds; and (ii) constrained speeds
are required for safety reasons, for a robot
interacting with people in daily life environ-
ments.

Thus, the speed limits of the simulated
robot were set to realistic values in a second
iteration? This increases the time required to
reach navigation goals. Besides, it usually
forces the robot to describe odd trajectories,
as the space required to perform turning
motions grows. Figure 5 depicts this be-
haviour, showing the path followed by the
robot to reach a new goal from its pose in

21t is worthy to mention that a simulation set-up using
an ’ideal’ robot (in terms of speed) has been kept in the
research group. This simulator is used to test higher
level, symbolic decision algorithms without lower level
influences.

the previous frame.

Fig. 5. Effects of a constrained rotation speed in the
followed paths.

The robot was still able to navigate cor-
rectly despite these drawbacks. However, the
causes of these odd behaviours were anal-
ysed in order to improve obtained motion
in terms of speed and naturalness (from a
human perspective). This analysis revealed
some parameters that can be adjusted to re-
duce turning radius without increasing maxi-
mum rotation speeds. More precisely, (i) the
effects of close obstacles in this speed were
tuned; (ii) the speed reduction rate, when
reaching the goal, was also adjusted; and
(iii) the sub-goal selection policy was also
changed as detailed in Section IV. These
changes improved obtained trajectories (Fig.
6) while preserving safety.

Fig. 6. Examples of robot paths after improvement.

Fig. 7 shows an example of robot navi-
gation in a complex environment. This en-
vironment includes three boxes strategically
placed, so that the robot can easily be
stalled between them (VFH* was not able
to move through these boxes in most cases.
On the contrary, :-ORM can set a path
through them if required). Additional obsta-
cles have been added to increase complexity.
The perimeter was limited to a square grid
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of 5x5 meters. The robot has to navigate
without collisions in these scenario, that has
little room for maneuver. If the robot is
able to navigate in long-term tests in this
environment, then proposed algorithms could
be worthy to be tested in real environments.

Figure 7 shows four frames, from left
to right and top to bottom, of one of the
performed tests, in which the robot has to
get close to the simulated person. The two
areas marked with orange ellipses in the
first two frames clearly show the concept of
“memory” in laser projections: In the first
frame, the robot, that was firstly looking to
the panel, turns 180 degrees and navigates
to the opposite section of the test area, as it
finds no obstacles in its path. The robot has
no direct line of sight towards the goal (i.e.
the person) while executing this motion, thus
its sub-objective is not modified. The third
frame shows that, once the robot has to set
a new sub-goal, it selects the one closer to
the current goal, thus it turns left and not
right when reaching the wall. Then, the robot
finally sets a free path towards its goal (third
frame) and it finally reaches it (fourth frame).

Figure 7 also shows the fused sensor data
computed for each frame. Three synthetic
RGDB sensors have been employed in the
simulator, to conform a 360 degree emulated
laser reading. The colour image obtained for
these three sensors is also depicted at the
top of each frame (left-center-right sensors).
Figure 7 shows that the obstacles perceived
for each sensor as well as the “laser mem-
ory” are adequately represented in the laser
reading.

B. Tests in real scenarios

Figure 3 show the robot that was used
in this study. The robot is named “Gualzru”
and navigates using a differential base. This
mobile base is made of aluminium, with
dimensions of 50 x 50 x 22 cm. It has
a differential drive configuration with two
front wheels and two freely rotating wheels
to stabilize the robot. There are four columns

on the base, and over them a platform with
two RGBD sensors and a pan-tilt head with
a third RGBD sensor. The data collected by
these three sensors have been fused in an
emulated laser using the proposed method.
Gualzru has two laptop on board. One of
them captures data from two RGBD sensors,
and the other one captures data from the last
RGBD sensor, and controls the base. The
robot has been completely designed and built
by RoboLab research group?.

The sequence of images in Figure 8 shows
how the robot avoids a person located in
its direct path towards the goal. The robot
describes a gentle curve towards its target to
avoid colliding with the person.

Fig. 9 shows a situation in which a person
repeatedly moves into the path of the robot,
blocking its trajectory towards the target.
The robot reacts to this dynamic obstacle by
changing current navigation sub-goals. These
reactions make the robot exhibit a ’polite’
behaviour, in which it avoids colliding with
the person while trying to reach the target.

The modifications to $-ORM algorithm,
detailed in Section IV, produce smoother
motion and reduce oscillations. However,
even after including these updates, the robot
exhibited sometimes an odd nodding be-
haviour. The evaluation of these situations
led to the adjustment of the execution pe-
riod for the navigation algorithm. While fast
periods seemed the optimal solution, they
produce slight oscillations when the robot
executes rectilinear motion. These oscilla-
tions are caused by repeated contradictory
commands (e.g. turn left - turn right cycles).
The use of slower execution periods helps
reducing them.

Finally, it is important to highlight the
differences that exist between a conventional
laser and the emulated one employed in these
tests. The $-ORM algorithm has always
been used with a conventional laser, which
usually has a range from four to thirty me-
ters. On the other hand, the emulated laser,

3http://robolab.unex.es
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Fig. 7. Navigation results in a complex scenario.

| ——

Fig. 8.

created from RGBD data, has a short maxi-
mum range, of about two meters. This forces
the R-ORM algorithm to put sub-targets near
the current position of the robot. Despite this,
the robot describes smooth paths towards
these objectives, using gentle curves. The use
of these near sub-targets does not interfere
with the ability to avoid obstacles nor to
reach desired targets.

VI. CONCLUSIONS

Experimental results show that the pro-
posed sensor fusion system is able to be
used by a social robot working in daily

The robot moves towards its goal while avoiding a standing person.

life environments. It is robust and accurate
enough for social interactions. The system
successfully merges data obtained by a set
of sensors, building an emulated laser read-
ing from them. It is easily scalable, and
can fuse data obtained by different types
of sensors. The particular implementation
described in this paper fuses data provided
by three RGBD cameras. These data allow
detecting obstacles at different heights while
using algorithms designed to work with 2D
laser scans.

On the other hand, two different reactive
navigation algorithm have been tested in this
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Fig. 9.

paper. Both of them offer good results, being
R-ORM slightly better than VFH* for the
daily life scenarios employed in the experi-
ments.

The main issue of the current proposal is
the necessity of a manual sensor calibration.
Projected point clouds are useful to help
aligning different sensor readings. However,
the calibration process is tedious when three
RGBD devices are involved.

Automatic calibration is a key characteris-
tic to be developed for the proposed system.
Future work will focus on matching point
clouds (e.g. using ICP-like algorithms) to
correctly estimate sensor poses. The possi-
bility of including motors to automatically
adjust sensor positions will also be evaluated.
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